Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar
نویسندگان
چکیده
The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57-m CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a https://ntrs.nasa.gov/search.jsp?R=20140002525 2018-01-12T08:02:48+00:00Z
منابع مشابه
Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar.
The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO(2) Emissions over Nights, Days, and Seasons (ASCENDS) as a midterm, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype laser absorption spectro...
متن کاملAnalysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing
The ability to observe the Earth’s carbon cycles from space provides scientists an important tool to analyze climate change. Current proposed systems are mainly based on pulsed integrated path differential absorption lidar, in which two high energy pulses at different wavelengths interrogate the atmosphere sequentially for its transmission properties and are back-scattered by the ground. In thi...
متن کاملLaser Amplifier Development for IPDA Lidar measurements of CO2 from Space
Accurate global measurements of tropospheric CO2 mixing ratios are needed to better understand the global carbon cycle and the CO2 exchange between land, oceans and atmosphere. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar as a candidate for the NASA’s planned ASCENDS mission to allow global measurements...
متن کاملPulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.
We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled ...
متن کاملHigh Energy 2-micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements
A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides highpr...
متن کامل